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Abstract 

An analytical solution of the Richards equation for drainage of water from an initially uniformly wet 

homogeneous soil profile is discussed. This solution builds on an approach originally used for infiltration 

and later adapted to drainage.  The mathematics for this solution are scattered and incomplete.  Here we 

provide a complete unified solution. The results are presented for some soils from the HYDRUS-1D standard 

soil types.  Results show progression of the draining front down through the soil with time and can be used to 

estimate the time for the soil to drain to a particular water content. Comparison of the analytical solution with 

HYDRUS-1D numerical solution shows the solution works well at small drainage times but estimates more 

drainage in the upper soil profile than HYDRUS-1D at larger times. 
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Introduction 

The drainage of water from a homogeneous soil is described by the Richards[’] equation 
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where z  is depth below the soil surface, t  is time, and θ  is volumetric soil water content. The soil water 

diffusivity and unsaturated conductivity are ( )θD  and ( )θK  respectively, and are strongly dependent on 

soil water content. The ( )θD  is assumed to be of the form (Broadbridge and White, 1988a): 

( ) ( ) ( )
2

1) /sD K C C Cα θ Θ = − ∆ − Θ
 

    (2) 

where sθ  and rθ  are the saturated and residual soil water contents respectively and rs θθθ −=∆  is their 

difference, ( ) θθθ ∆−=Θ r  is the scaled water content, sK  is the saturated soil hydraulic conductivity, α  

is an inverse capillary length parameter of Philip (1985), and 1>C  is a dimensionless parameter. The 

hydraulic conductivity is assumed to have the functional form 

( ) ( ) ( )21 /sK K C CΘ = − Θ − Θ .    (3) 

Broadbridge and White’s (1988a,b) model for soil water movement combines the functional form of the 

diffusivity from Fujita (1952) and Knight and Philip (1974) with the Burgers’ equation form of the 

conductivity used by Clothier et al. (1981). Saunders et al. (1988) also independently came up with a similar 

solution. The Broadbridge and White analytical solution uses a transformation found by Fokas and Yortsos 

(1982), and is a combination of the Storm (1951) solution used by Knight and Philip (1974) in the absence of 

gravitational effects and the Burgers’ equation solution given by Clothier et al. (1981). Warrick et al. (1990) 

adapted the Broadbridge and White solutions for soil water drainage, and Parkin et al. (1995) and Si and 

Kachanoski (2000) further explored their use. These drainage solutions use different boundary conditions to 

the Broadbridge and White solution and result in different functions in the solution. The mathematics of the 

analytical solution is scattered and incomplete in the published literature; this document presents a unified 

account of the theory.  

The solution for infiltration into a deep profile given by Broadbridge and White (1988a) and adapted for 

drainage in a deep soil by Warrick et al. (1990) and Parkin et al. (1995) had zero water flux at the soil 

surface;the initial and boundary conditions were; ( ) 00, θθ =z , ( ) ( ) 0=
∂
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The corresponding initial value for the scaled water content is ( ) θθθ ∆−=Θ r00 . The transformations used 
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by Broadbridge and White (1988) introduce a dimensionless time parameter ( )4 1 /sC C K tτ α θ= − ∆ , a 

new dimensionless space-like parameter ς  and a new independent variable ( )τς ,u which satisfies a linear 

advection diffusion equation. It is important to note that the solutions ( )τς ,u  for the infiltration case studied 

by Broadbridge and White (1988) and the drainage case studied by Warrick et al. (1990) are different 

because of their different boundary conditions.  

The Warrick et al. (1990) solution for ( )τς ,u  for drainage with zero surface flux is given by  

( ) ( ) ( ) [ ]( ) [ ]( )2 1 1 1 1
0 02 2 2 2

, exp / / / /u f f B f Bς τ ς τ ς τ τ ς τ τ ς τ = − + − − +
 

 (4) 

with ( ) ( ) ( )xxxf erfcexp 2≡ , and the parameter 0B  given in terms of the initial condition by 

( )000 Θ−Θ= CB . For the case of no surface flux the original space variable is given in terms of the 

solution ( )τς ,u  by ( ) ( )[ ]{ } ( )ατςςτς Cuz ,ln, −=  and the scaled water content is given 

by ( ) ( ) ( )





















∂

∂
−−=Θ

−1

,,11, τςτς
ς

τς u
u

C . The quantity ( ) ( )τςτς
ς

,, u
u

∂

∂
 does not seem to be given 

explicitly in the published literature, and is 

( )

( )

1
1 1 1 1

0 0 0 02 2 2 2
0

,

2 .
,

u

B B B B
B f f f f f

u

ς τ
τ ς τ ς τ ς τ ςςς

ς τ τ τ τ τ τ

−
∂

   − + − +         ∂
= − + + −            

            
 

 (5) 

 

The surface value of the scaled water content is then 
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When τ = 0, then eqn (6) becomes ( ) ( )[ ] 0

1

0110,0 Θ=+−=Θ
−

BC  as required. 

Equations 4-6 provide a unified solution which is easily computed.  We used the eqs 4-6 above to model 

drainage from a uniformly wet soil profile using soil properties taken from HYDRUS-1D soil catalogue and 

are presented in Table 1.  The desorptivity was estimated from simulation of desorption of an initially 

saturated horizontal soil columns using HYDRUS-1D (Simunek et al. 1998) and C and α by fitting the water 

content, potential relationship to eqn (25) of Broadbridge and White (1988b).  We also calculated results for 

the Brindabella silty clay loam (not shown) to check that we got the same results as Warrick et al. (1990).  

Eqs 4-6 were solved using MatLab. 

 
Table 1. Soil properties derived from HYDRUS-1D catalogue. 

 

Soil θr
 
(m

3 
m

-3)
 θs (m

3 
m

-3)
 C Ks (m s

-1
) α ( m

-1
) 

Clay 0.068 0.38 1.0002 5.56x10
-7

 6.92 

Silt 0.078 0.46 1.0063 6.94x10
-7

 5.15 

Loam 0.078 0.43 1.0189 2.89x10
-6 

7.11 

Sand 0.045 0.43 1.0458 8.35x10
-5

 17.94 

 

Results and Discussion 
The drainage of the soil from saturation with a free drainage (unit gradient) boundary condition was 

simulated in HYDRUS-1D for the soils in Table 1 and compare with drainage calculated with the analytical 

solution (Fig.1).  The analytical solution appears to estimate more drainage near the surface especially at 

large times than does HYDRUS-1D.  For times less than 10 days the analytical solution and HYDRUS-1D 

give similar (r
2
 > 0.88) estimates of the water content profile. The percentage difference in the water content 

at the surface between the analytical solution and HYDRUS-1D increase with time from negligible to 

approximately 28% by t  = 50 days, except for the sand. This is most likely due to different functional 

relationships for K and D used in the analytical solution and HYDRUS-1D. This will be explored in the 

future. 
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Figure 1. Comparison of the analytical solution with HYDRUS-1D for drainage of an initially saturated soil 

profile for a) clay, b) silt, c) loam and d) sand. The times indicated in the legend are days since drainage 

commenced. 

 

The drainage from different initial uniform water content profiles was calculated with the analytical solution 

and HYDRUS-1D (Fig. 2).  This indicates that the percentage difference between the analytical solution and 

the numerical solution at large times (t = 50 days) is approximately the same, as the initial water content 

decreases.  

 

Conclusion 
An analytical solution for drainage from uniformly wet soil profiles is shown to give similar water content 

profiles (r
2
 > 0.88) at drainage times < 10 days to those simulated with a one-dimensional numerical solution 

of Richards’ equation.  This is especially so at the surface where the percentage difference in the water 

content between the two models for all but the sand soils increases with increasing time. At large times the 

analytical solutions water content near the surface is usually less than the numerical solution. The analytical 

solution may overestimate drainage at large times. 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 

12 

a

z (m)

0.0 0.5 1.0 1.5 2.0 2.5

θ
 (

m
3
 m

-3
)

0.1

0.2

0.3

0.4

0.5

c

z(m)

0.0 0.5 1.0 1.5 2.0 2.5

θ
 (

m
3
 m

-3
)

0.1

0.2

0.3

0.4

0.5

b

z (m)

0.0 0.5 1.0 1.5 2.0 2.5

θ
 (

m
3
 m

-3
)

0.1

0.2

0.3

0.4

0.5

d

z (m)

0.0 0.5 1.0 1.5 2.0 2.5

θ
 (

m
3
 m

-3
)

0.1

0.2

0.3

0.4

0.5

t = 0

t = 0.5

t  = 1

t  = 5

t  = 10

t  = 50

t = 0.5 HYDRUS

t = 1 HYDRUS

t = 5 HYDRUS

t = 10 HYDRUS

t = 50 HYDRUS

 
Figure 2. Comparison of the analytical solution with HYDRUS-1D for drainage of an initially saturated loam soil 

profile for a) θθθθ = 0.43, b) θθθθ = 0.35, c) θθθθ = 0.30 and d) θθθθ = 0.25. The times indicated in the legend are days since 

drainage commenced. 
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